Sem resumo de edição
 
(22 revisões intermediárias por 3 usuários não estão sendo mostradas)
Linha 1: Linha 1:
[[Arquivo:Func-rede.png|right|210x210px]]
= 1 Um pouco de biologia =
E se ao invés de programar uma maquina para imitar comportamentos inteligentes como por exemplo jogar xadrez, fosse construído um meio para que o computador aprenda e demonstre sinais de inteligencia por conta própria. Parece conversa de filmes de ''Hollywood,'' mas isso já é possível graças as redes neurais, um modelo computacional que visa o aprendizado de máquina. Inspirada no sistema nervoso central de um animal, as redes neurais são representadas como uma serie de neurônios interligados que computam valores de entradas e fornecem uma saída através do diversos métodos desenvolvidos para o aprendizado de máquina.
O sistema nervoso humano funciona através de impulsos elétricos, levados até o cérebro pelos neurônios, onde são interpretados e emitem uma resposta ao estímulo.


== Um pouco de biologia ==
Esse é o mesmo funcionamento de um sistema de informação, que lida com uma entrada, um processamento e uma saída. Por muito tempo o ser humano tentou delegar suas atividades a maquinas, mas ainda não existe uma que possa replicar o pensamento de uma mente.
Para se entender realmente como funciona uma rede neural, primeiramente devemos entender alguns conceitos biológicos, visto que esta se baseia no sistema nervoso central dos animais que tem como agente principal o neurônio.  


'''Neurônios'''
Para isso tentamos criar as Redes Neurais Artificiais(RNAs) : levar o processamento das máquinas além da simples interpretação de comandos inseridos.
[[Arquivo:Estrutura-neuronio.jpg|right|alt=Estrutua de um neurônio representativo|199x199px|'''''Fonte:''''' ''http://www.infoescola.com/wp-content/uploads/2010/01/estrutura-neuronio.jpg''
]]
O neurônio é o agente responsável pela condução de impulsos elétricos do sistema nervoso, este pode ser divido em três partes principais corpo celular, dentritos e axônio. O corpo celular também conhecido como pericário armazena o núcleo do neurônio e daqui partem todo o prolongamento da célula, os dendritos são numerosos prolongamentos responsáveis pelas recepções sensoriais e de outros neurônios e o axônio é o prolongamento responsável por levar os impulsos nervosos as outras células.  


'''Sinapses'''
= 2 Da biologia para a computação =
A questão é: como funciona o pensamento?


Os neurônios, diferente de outras células, não são interligados diretamente, eles possuem um espaço entre sí, são eles os espaços sinápticos preenchido que são preenchidos por um fluido. Assim que o impulso nervoso percorre todo o neurônio e chega ao fim do axônio, este ultrapassa a célula para o meio e neurotransmissores desse fluido sináptico encaminham os íons liberados no axônio para outro neuronio.
A resposta não é nem um pouco simples, até porque se ela fosse não teríamos a capacidade de fazer a pergunta. Mas o que os desenvolvedores focam é em fazer com que as RNAs sejam capazes de aprender, para depois compilar esse conhecimento em respostas aos usuarios. É assim que funciona o  
IBM Watson[https://www.ibm.com/watson/br-pt/].


== Da biologia para a computação ==
Assim como na biologia as redes neurais também possuem seus neuronios artificiais. Chamadas de redes neurais artificiais(RNA) consistem na solução de problemas de inteligencia artificial através de métodos de aprendizado seguindo o modelo de funcionamento do cérebro. Estes sistemas são capazes de errar, acertar e até fazer descobertas, lembrando que isso não é programado, o circuito é capaz de chegar nas próprias conclusões sozinhos, portanto não há implicação de inteligencia, mas sim a construção da própria inteligencia.


== Como funciona uma RNA ==
= 3 Como funciona uma RNA =
Uma rede neural artificial[[Arquivo:Exemplo.jpg]]
As RNAs são compostas por varias unidades de processamento, chamadas nódulos, que processam sinais de entrada e podem se comunicar. A cada um desses nódulos é dado um peso, que é usado depois para fazer uma média ponderada das informações dos nódulos. Se essa média ultrapassar um limite pré-estabelecido é dada uma saída de dados.
 
Podem haver várias camadas de nódulos de processamento, interpretando entradas diferentes e cruzando essas informações, dando assim respostas mais precisas e aprendendo mais rápido.
 
= 4 Do aprendizado a inteligencia =
Para que as RNAs funcionem é preciso o processo de treinamento da rede neural, para que ela possa saber como dar as repostas esperadas das entradas.
 
Existem três paradigmas de treinamento
*Supervisionado: um agente externo indica a resposta esperada
*Não-supervisionado: não existe um agente externo indicando as respostas
*Reforço: o agente externo avalia as respostas
 
= 5 Topologias =
 
*FeedForward [[Arquivo:feedfoward.png]]
*FeedForward de Camadas Múltiplas[[Arquivo:feedfowardcamadas.png]]
 
*Recorrente ou Realimentada [[Arquivo:RNArealimentada.png]]
*Estrutura Reticulada [[Arquivo:estreticulada.png]]
 
= 6 Aplicações =
 
Ainda não existem muitas aplicações praticas paras as redes neurais além de algumas APIs, como as do IBM Watson.
Muitas empresas também usas suas redes neurais como bots para uso do publico, como o allo do google.
A microsoft também fez uma IA para o twitter, que deu errado e em um dia foi retirada do ar[http://gizmodo.com/here-are-the-microsoft-twitter-bot-s-craziest-racist-ra-1766820160].
 
= 7 Concluindo =
 
Ao dar as RNAs conhecimento e formas de manipulá-lo os sistemas tem algum poder de pensamento,mas ainda estão presas as suas programações, de forma que ainda estão longe da capacidade humana de processamento.
 
Com a grande velocidade da evolução dos processadores e as pesquisas na área da inteligencia artificial é esperado que os sistemas criados pelos seres humanos algum dia cheguem a se equiparar e talvez passar o poder do cérebro humano.
 
= 8 Referências Bibliográficas =
*Arquiteturas e Topologias de Redes Neurais Artificiais  [https://www.embarcados.com.br/redes-neurais-artificiais/]
*Redes Neurais Artificiais [http://conteudo.icmc.usp.br/pessoas/andre/research/neural/]  
*Neuralink and the Brain’s Magical Future[http://waitbutwhy.com/2017/04/neuralink.html]
*Conhecimentos adquiridos durante minha formação.

Edição atual tal como às 16h55min de 6 de junho de 2017

1 Um pouco de biologia

O sistema nervoso humano funciona através de impulsos elétricos, levados até o cérebro pelos neurônios, onde são interpretados e emitem uma resposta ao estímulo.

Esse é o mesmo funcionamento de um sistema de informação, que lida com uma entrada, um processamento e uma saída. Por muito tempo o ser humano tentou delegar suas atividades a maquinas, mas ainda não existe uma que possa replicar o pensamento de uma mente.

Para isso tentamos criar as Redes Neurais Artificiais(RNAs) : levar o processamento das máquinas além da simples interpretação de comandos inseridos.

2 Da biologia para a computação

A questão é: como funciona o pensamento?

A resposta não é nem um pouco simples, até porque se ela fosse não teríamos a capacidade de fazer a pergunta. Mas o que os desenvolvedores focam é em fazer com que as RNAs sejam capazes de aprender, para depois compilar esse conhecimento em respostas aos usuarios. É assim que funciona o IBM Watson[1].


3 Como funciona uma RNA

As RNAs são compostas por varias unidades de processamento, chamadas nódulos, que processam sinais de entrada e podem se comunicar. A cada um desses nódulos é dado um peso, que é usado depois para fazer uma média ponderada das informações dos nódulos. Se essa média ultrapassar um limite pré-estabelecido é dada uma saída de dados.

Podem haver várias camadas de nódulos de processamento, interpretando entradas diferentes e cruzando essas informações, dando assim respostas mais precisas e aprendendo mais rápido.

4 Do aprendizado a inteligencia

Para que as RNAs funcionem é preciso o processo de treinamento da rede neural, para que ela possa saber como dar as repostas esperadas das entradas.

Existem três paradigmas de treinamento

  • Supervisionado: um agente externo indica a resposta esperada
  • Não-supervisionado: não existe um agente externo indicando as respostas
  • Reforço: o agente externo avalia as respostas

5 Topologias

  • FeedForward
  • FeedForward de Camadas Múltiplas
  • Recorrente ou Realimentada
  • Estrutura Reticulada

6 Aplicações

Ainda não existem muitas aplicações praticas paras as redes neurais além de algumas APIs, como as do IBM Watson. Muitas empresas também usas suas redes neurais como bots para uso do publico, como o allo do google. A microsoft também fez uma IA para o twitter, que deu errado e em um dia foi retirada do ar[2].

7 Concluindo

Ao dar as RNAs conhecimento e formas de manipulá-lo os sistemas tem algum poder de pensamento,mas ainda estão presas as suas programações, de forma que ainda estão longe da capacidade humana de processamento.

Com a grande velocidade da evolução dos processadores e as pesquisas na área da inteligencia artificial é esperado que os sistemas criados pelos seres humanos algum dia cheguem a se equiparar e talvez passar o poder do cérebro humano.

8 Referências Bibliográficas

  • Arquiteturas e Topologias de Redes Neurais Artificiais [3]
  • Redes Neurais Artificiais [4]
  • Neuralink and the Brain’s Magical Future[5]
  • Conhecimentos adquiridos durante minha formação.